УДК 622.73

Е.В. ТЕРНОВАЯ, Н.С. ПРЯДКО, д-р техн. наук (Украина, Днепр, Институт технической механики НАНУ и ГКАУ)

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ХАРАКТЕРИСТИК АКУСТИЧЕСКИХ СИГНАЛОВ ПРИ ТРАНСПОРТИРОВАНИИ МАТЕРИАЛОВ В УСТАНОВКАХ "ГРАНУЛОМЕТР"

Постановка проблемы. Актуальной задачей совершенствования технологии измельчения является исследование кинетики размеров и гранулометрического состава транспортируемых частиц в измельчительных установках. Возможность определения крупности частиц в потоках газовзвеси без остановки процесса позволит сделать своевременную оценку качества продукта измельчения, что ведет к повышению эффективности процесса.

Анализ последних достижений. Основой научного направления безконтактной оценки гранулометрического состава сыпучего материала в потоках газовзвеси является изучение закономерностей связи технологических параметров струйного измельчения и характеристик сигналов акустического мониторинга процесса [1 - 4]. На базе разработанного нового метода оптимизации технологии струйного измельчения, отличающегося использованием явления акустической эмиссии при разрушении твердых тел для мониторинга процесса измельчения; впервые получены теоретические и экспериментальные зависимости, которые характеризуют связь удельной поверхности, гранулометрического состава измельчаемого материала, производительности мельницы с акустическими параметрами процесса измельчения. Необходимо создать методику определения размеров частиц в потоке энергоносителя на основе результатов акустического мониторинга.

Цель работы заключается в экспериментальном установлении зависимости параметров акустических сигналов (AC) от крупности материала, при транспортировке потоков узких фракций с установленной пластиной на пути потока и без нее.

Содержание исследования. Испытания проводились на разработанной установке "Гранулометр-1", которая включает в себя эжекторный узел струйной мельницы УСИ-20, a так же на усовершенствованной "Гранулометр-2" с установленной пластиной на пути двухфазного потока материала с энергоносителем. В ходе экспериментальных исследований рассматривались материалы различной плотности, а именно кварц и шамот, крупностью от 0.0063 до 1.6 мм. В статье приведены лишь некоторые фракции (0.2; 0.315;0,4 мм), потому что они присутствуют в обоих рассматриваемых материалах. Акустическая активность при транспортировке материала измерялась с помощью пьезокерамического датчика, который соединялся с латунным волново-

Збагачення корисних копалин, 2016. – Вип. 64(105)_

дом, установленным в потоке струи. Запись и дальнейшая обработка сигналов осуществлялась посредством аналого-цифрового преобразователя, соединенного с персональным компьютером. Рассматривались AC при частоте регистрации 400 кГц. За выбранный интервал времени (порядка 0,1 с) вычислялись значения характерных частот F_{xap} , а так же соответствующие им амплитуды A сигналов.

Основной материал. Для исследования связей амплитудных распределений с гранулометрическим составом сыпучего материала в потоке была создана установка для транспортирования частиц энергоносителем (сжатым воздухом) и одновременного акустического анализа [5].

Схема установки "Гранулометр-1", которая включает эжекторный узел струйной мельницы, показана на рис. 1.

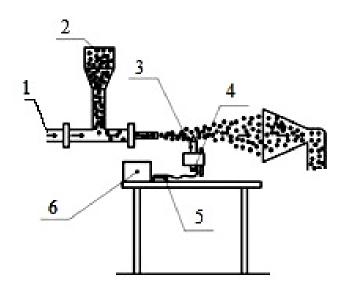


Рис. 1. Схема установки "Гранулометр-1" 1 – разгонная трубка; 2 – загрузочный бункер; 3 – волновод; 4 – пьезокерамический датчик; 5 – АЦП; 6 – компьютер

Установка работает следующим образом. Энергоноситель с давлением $P=0,3\,$ МПа подается в разгонную трубку 1. Сыпучий материал (в виде узких фракций или их смесей) крупностью менее 2,5 мм подается из бункера 2, под-хватывается энергоносителем и транспортируется над волноводом 3. Частицы соударяются с волноводом, связанным с датчиком 4. Акустическая информация далее передается через АЦП 5 в компьютер 6 для анализа и обработки.

При проведении экспериментальных исследований были получены характерные спектры частот для узких фракций материалов. На рис. 2 показаны записи сигналов для фракций кварцевого песка Вольногорского месторождения трех фракций: 0,2 мм (а); 0,315 мм (б) и 0,4 мм (в).

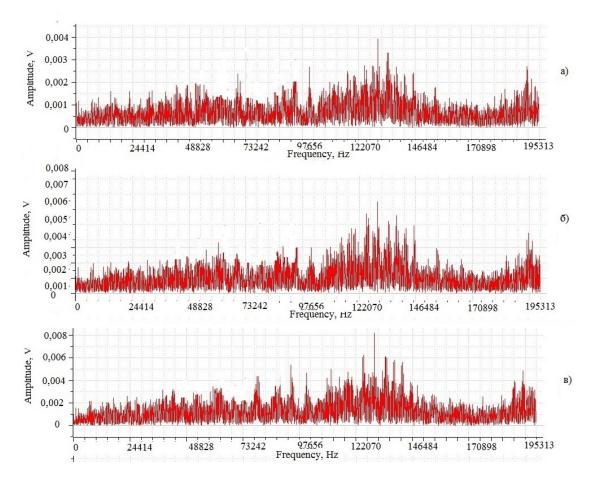


Рис. 2. Спектр частот при исследовании на установке "Гранулометр-1" фракций кварца крупностью 0,2 мм (а), 0,315 мм (б) и 0,4 мм (в)

В ходе транспортировки материала, волновод, при прохождении материала через него, фиксирует сигналы, исходящие от всех частиц, т е происходит наложение информации. В связи с этим предложено установить в поток материала пластину, которая способствует разделению частиц с учетом влияния сил тяжести (рис. 3). Таким образом, мелкие частицы находятся в верхней части потока, а крупные – в нижней. В этом случае волновод фиксирует сигналы более точно.

Данная установка "Гранулометр-2" включает в себя износостойкую пластину (1), которая установлена на станине, присоединенной к корпусу, а так же сверхзвуковой эжектор с разгонной трубкой (6). Соосно с пластиной установлен приемник материала (7), а чувствительный элемент выполнен в виде волновода (2), акустически изолированного от корпуса и соединенного через датчик (3) с устройством обработки информации в виде аналого-цифрового преобразователя (АЦП) (4) и с устройством управления в виде компьютера (5).

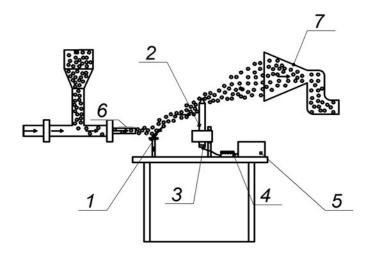


Рис. 3. Схема установки "Гранулометр-2" с установленной пластиной 1 – пластина; 2 – волновод; 3 – пьезокерамический датчик; 4 –АЦП; 5 – компьютер; 6 – разгонная трубка; 7 – бункер-улавливатель

При проведении экспериментальных исследований на гранулометре с установленной пластиной были получены следующие спектры частот сигналов.

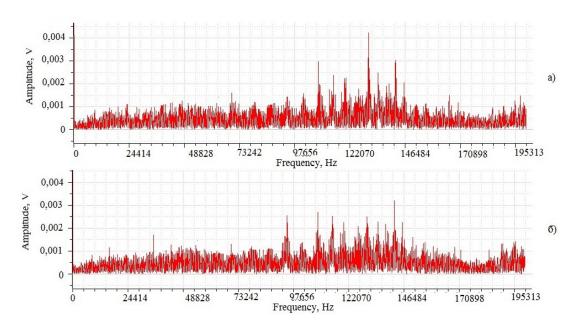


Рис. 4. Спектр частот сигналов при транспортировании с пластиной фракций кварца (а) и шамота (б) крупностью 0,2 мм

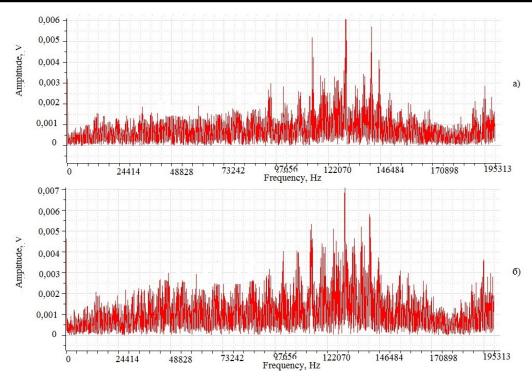


Рис. 5. Спектр частот сигналов, записанных при транспортировании с пластиной фракций кварца (а) и шамота (б) крупностью 0,315 мм

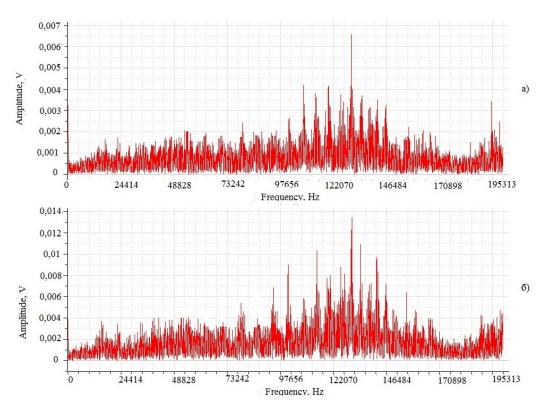


Рис. 6. Спектр частот сигналов, записанных при транспортировании с пластиной фракций кварца (а), шамота (б) крупностью 0,4 мм

Збагачення корисних копалин, 2016. – Вип. 64(105)

Из ранее проведенных исследований [5] известны характерные частоты АС, присущие каждой фракции материала при его транспортировке без пластины. Анализ спектров частот для кварца и шамота при транспортировке на установке "Гранулометр-2" с установленной пластиной позволил сравнить характерные частоты сигналов при транспортировке одинаковых материалов в аналогичных условиях. Результаты представлены в табл. 1

Таблица 1 Результаты анализа характерных частот и соответствующих амплитуд при исследовании материалов на установка "Гранулометр-1" и "Гранулометр-2"

Материал	d, mm	Гранулометр-1		Гранулометр-2	
		F, Hz	A, mV	F, Hz	A, mV
Кварц	0,2	69335,7	0,0024	69824	0,00165
	0,315	60546,6	0,0035	60547	0,0017
	0,4	79101,3	0,0042	80078	0,00245
Шамот	0,2	69335,7	0,0028	69824	0,00135
	0,315	60058	0,00415	60547	0,0021
	0,4	80047,8	0,0081	79590	0,0047

Анализ частоты и амплитуды сигналов при исследовании фракций шамота и кварца размерами 0,2; 0,315 и 0,4 мм на двух экспериментальных установках "Гранулометр-1, 2" показал, что установленные характерные частоты АС при экспериментальных исследованиях с пластиной и без нее практически не отличаются, а соответствующие им амплитуды отличаются в 2 раза.

На графике (рис. 7) показана связь частоты и амплитуды с размерами частиц шамота и кварца при транспортировке материала с установленной пластиной и без нее, т.е. при исследовании материалов на установках "Гранулометр-2" и "Гранулометр-1", соответственно.

Рис. 7. Связь характерной частоты и амплитуды сигналов для фракций различных материалов при транспортировке на установках "Гранулометр"

На графиках (рис. 8 и 9) показано различие амплитуд сигналов при транспортировке материала с установленной пластиной и без нее для фракций шамота и кварца.

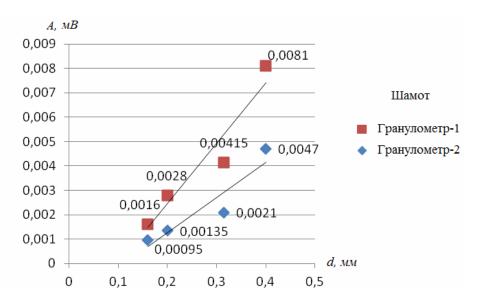


Рис. 8. Связь характерной амплитуды с размерами частиц шамота при транспортировке с пластиной и без нее

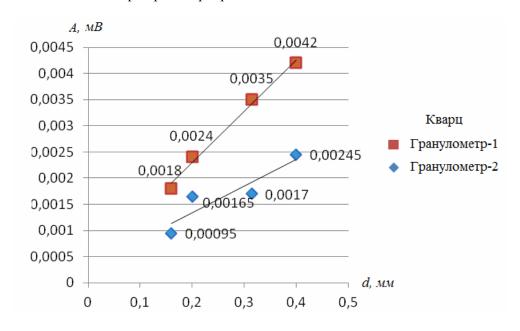


Рис. 9. Связь характерной амплитуды с размерами частиц кварца при транспортировке с пластиной и без нее

Отличие амплитуд записываемых сигналов вызвано тем, что при установленной пластине веер частиц расширяется и не наблюдается наложение амплитуд AC от ударов частиц разных фракций, т.е. частиц разных размеров.

Выводы

Разработаны и созданы экспериментальные установки "Гранулометр-1" и "Гранулометр-2" для анализа гранулометрического состава материалов в потоке. Анализ полученных записей акустических сигналов и их характеристик позволил определить характерные частоты для узких фракций различных материалов. Результаты исследований подтвердили независимость характерных частот АС от типа установки. Установлено, что величина амплитуд сигналов
характерных частот на установке "Гранулометр-2" в два раза меньше. Полагаем, что этот факт объясняется отсутствием наложения сигналов от частиц различных размеров, транспортируемых в потоке. Это позволяет повысить точность определения наличия частиц узких фракций в материале, транспортируемом в потоке энергоносителя.

Список литературы

- 1. Акустические исследования измельчаемости кварцевых песков / П.И. Пилов, Л.Ж. Горобец, Н.С. Прядко, В.П. Краснопер // Збагачення корисних копалин: Наук.-техн. 36.-2011.-Вип. 46(86).-С. 75-81.
- 2. Прядко Н.С. Развитие теории тонкого измельчения полезных ископаемых: Автореф. дисс. . . . д-ра техн. Днепр-ск, 2015. 36 с.
- 3. Прядко Н.С. Анализ качества продукта струйного измельчения на основе акустического мониторинга // Техническая механика. 2010. № 2. С. 81-86.
- 4. Возможности акустического прогнозирования гранулометрии частиц при струйном измельчении / Л.Ж. Горобец, Н.С. Прядко, К.А. Левченко и др. // Вестник НТУ "ХПИ". 2014. Вып. №52. С. 10-18.
- 5. Терновая Е.В. Анализ частот сигналов при транспортировании и измельчении сыпучих материалов в потоке // Збагачення користних копалин: Наук.-техн. зб. -2016. Вип. 63(104). С. 59-65.

© Терновая Е.В., Прядко Н.С., 2016

Надійшла до редколегії 12.08.2016 р. Рекомендовано до публікації д.т.н. Л.Ж. Горобець