УДК 539.37/38

А.В. АНЦИФЕРОВ, канд. техн. наук, Ю.В. САВЧЕНКО (Украина, Днепр, Государственное ВУЗ "Национальный горный университет")

ПЕРСПЕКТИВНАЯ ТЕХНОЛОГИЯ ПЕРЕРАБОТКИ ТВЕРДЫХ СПЛАВОВ

Введение. Проблема переработки использованного инструмента примышленными предприятиями остается актуальной и в наше время. Нами впервые в мире предлагается высокоэффективная технология производства режущего, разрушающего и формообразующего инструмента из вольфрамокобальтовых и вольфрамоникелевых сплавов путем прямой регенерации вторичного сырья без использования термохимических и металлургических методов [1, 2]. Технология принципиально отличается от существующих высокими технико-экономическими показателями, производительностью, малой энергоемкостью и экологической чистотой.

Основными операциями технологии порошковой металлургии являются: получение порошков, приготовление шихт, формование и спекание изделий. Металлические порошки могут быть получены различными методами, важнейшими из которых являются:

- 1) восстановление окислов и солей;
- 2) электролиз расплавленных солей или их водных растворов;
- 3) термическая диссоциация карбонилов;
- 4) распыление;
- 5) механическое измельчение.

Предлагаемая технология переработки отходов твердых сплавов содержит два основных этапа: дробление способом ударно-волнового нагружения взрывом и механическое измельчение.

Цель работы — создание эффективного измельчительного оборудования и выбор параметров процесса мелкодисперсного измельчения продуктов дробления твердого сплава Одним из таких требований является обеспечение высокой удельной производительности при тонком измельчении твердых и абразивных материалов.

Основная часть. Для получения порошковых материалов применяется ряд механических измельчителей (шаровые барабанные и вибрационные мельницы, дезинтеграторы, электромагнитные мельницы и др.), каждый из которых имеет свою область использования и предельно достигаемую крупность готового продукта при рациональной длительности ведения процесса измельчения. При механическом измельчении разрушение и деформирование материала инициируют самые различные химические превращения, глубина которых зависит от количества затраченной энергии. Из освоенных промышленностью механиче-

Збагачення корисних копалин, 2017. – Вип. 67(108)

ских измельчителей для использования в качестве механохимических реакторов большими возможностями обладают вибрационные мельницы. В настоящее время наибольшее распространение получила конструктивная схема вибрационной мельницы с горизонтальным расположением помольной камеры и инерционным вибровозбудителем, корпус которой совершает колебательные движения по траектории, близкой к круговой. Измельчение материалов в этом случае происходит в результате истирания и удара с воздействием мелющих тел на поверхностные слои частиц.

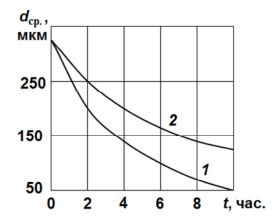
Теоретические и экспериментальные исследования, проведенные в Национальном горном университет, позволяют сделать вывод, что для тонкого и сверхтонкого измельчения порошковых материалов и проведения некоторых механохимических реакций большими возможностями обладают вертикальные вибрационные мельницы (МВВ). Отличительной особенностью их от мельниц других типов является то, что помольные камеры совершают колебательные движения по прямолинейной траектории в вертикальной плоскости. Такие параметры обеспечивают преимущественно виброударное воздействие на разрушаемый материал с проникновением зоны деформации на весь объем частицы. Это обеспечивает, в свою очередь, не только поверхностную активацию материала, но и нарушение внутренней структуры частиц и, следовательно, проникновение активной зоны на большую глубину. Следует отметить также, что благодаря сравнительно небольшой и регулируемой энергии единичного воздействия на частицу, обеспечивается постепенное развитие трещин и разрушение преимущественно по местам наличия макродефектов частиц. В то же время, при соответствующем режиме работы, в вертикальной вибрационной мельнице можно обеспечить разрушение и кристаллической решетки частиц материала.

Сказанное выше было подтверждено комплексом экспериментальных исследований по измельчению карбида титана [3]. Результаты опытов подтвердили более высокую эффективность использования вертикальной вибрационной мельницы по сравнению с горизонтальной.

Известны данные по измельчению твердых сплавов в горизонтальной вибрационной мельнице [4]. Для выяснения эффективности измельчения вольфрамокобальтовых сплавов в мельницах разных типов был спроектирован и изготовлен экспериментальный образец лабораторной вертикальной вибрационной мельницы.

Мельница имеет 4 помольных камеры, приспособленных для сухого и мокрого измельчения. Мелющими телами были шары из стали ШХ15.

На первом этапе опытов исходными фракциями твердого сплава были -2 мм и -0,5 мм. Сравнительный анализ показал возможность и высокую эффективность тонкого измельчения твердого сплава.


Для определения влияния среды измельчения на химический состав и структуру полученного порошка были проведены помолы в спирте и без него. Результаты анализа приведены в табл. 1. Контрольный рассев полученных порошков на сите 74 мкм дал незначительный остаток для сухого помола. Полученные результаты показали, что в качестве среды при измельчении твердо-

сплавного материала необходимо использовать спирт. При этом, количество спирта должно составлять 30% от массы загружаемого порошка.

Таблица 1

Элемент	Сухой помол, %	Спиртовой Размол, %		
Со	9,1	8,5		
C_{c_B}	0,11	0,17		
$C_{\text{общ}}$	6,1	5,9		
O_2	0,28-0,3	0,25		

Дальнейшие помолы проводились для наработок партий порошков, из которых изготавливался инструмент для последующих испытаний в производственных условиях. Анализ полученных результатов позволил установить, что для получения качественного порошка при исходной фракции -0,5 мм и соотношении массы материала к массе шаров 1/20 требуется время измельчения около 8 часов, что в 4 раза меньше, чем в горизонтальной вибромельнице. Аналогичные помолы в шаровой мельнице длятся сотни часов. Результаты сравнения с помолами в горизонтальной вибромельницей по данным [4] приведены на рисунке.

Кинетика измельчения сплава ВК6 в вибромельницах 1 – вертикальная; 2 – горизонтальная

Физико-химический анализ порошков вторично используемого твердого сплава после помола проводился в лаборатории инструментального производства ПО ЮМЗ. Исследовались твердость, удельный вес, форма и величина частиц, а также их химический состав. Результаты анализа показали (табл. 2), что полученные по предлагаемой технологии порошки отвечают требованиям стандартов и могут быть использованы для изготовления металлокерамического инструмента.

Таблица 2

Свойства твердосплавных пластин, полученных из регенерированных твердых сплавов различных марок

1 11										
Марка	Свойст	ва реге	нериров	анных смесей	Физико-механические свойства спеченных сплавов					
сплава	Co,	Собш.	Ссвоб.	$d_{\rm cp}$, мкм	Hc,	ρ,	Твердость	$\sigma_{_{\rm W3\Gamma,}}$	d_{WC} ,	
отходов	%	%	%	(по Фишеру)	кА/м	г/см ³	HRA	МПа	МКМ	
ВК6	5,85	5,78	следы	0,7	126	14,70	90,6	180	2,08	
ВК6	5,76	5,7	следы	2,8						
ВК8	7,73	5,68	следы	0,7	139	14,44	89,5	201	1,96	

Для увеличения производительности измельчения крупки, полученной ударно-волновой обработкой лома твердых сплавов, ее загружали в мельницу мокрого помола ММР 70/110, где измельчение производилось по режиму табл. 3. Фракция крупки не более 3 мм.

Таблица 3

				i di di tittiyat d
	Загрузка, кг	Длительность	Скорость вра-	
смеси шаров		спирта, л	измельчения, час	щения мельни- цы, об/мин.
316	1200±5	90±1	48	36±1

Для определения оптимальной длительности процесса измельчения, через каждые 4 часа производился отбор проб спиртовой суспензии для анализа состава и дисперсности смеси в лаборатории КП СКТС и ТМ. Результаты анализа смеси, приведены в табл. 4.

Таблица 4

Наименование смеси		(Средний диа-			
паименование смеси	Co	Собщ.	Ссв	O_2	Fe	метр, мкм
Первая серия Исходная	5,63	5,3	следы	0,14	0,057	-3000
4 часа						
8 часов						1,0
12 –"–						0,95
16 –"–						0,85
20 –"–	5,6	5,68	следы	0,17	0,057	0,80
24 –"–						0,6
40 –''–	5,65	5,68	следы		0,055	0,6
48 часов	5,93	5,69	следы		0,057	0,6
Вторая серия Исходная	5,63	5,3	следы	0,14	0,057	-2000+1000
20 часов	5,75	5,35	следы	0,15	0,055	0,6
Третья серия Исходная	5,63	5,3	следы	0,14	0,057	-1000
16 часов	5,7	5,4	следы	0,15	0,050	0,6
Технические требования к смеси ВК6 по ТИ 48-4233-06-11-94	5,8- 6,2	5,45- 5,8	менее 0,1	менее 0,4	менее 0,2	средний диаметр WC 3,5-5,5

Збагачення корисних копалин, 2017. – Вип. 67(108)

Определение содержания компонентов в смеси производилось методом химического анализа по утвержденным методикам, дисперсности – по методу Фишера на одноименном приборе.

Технологическое опробование смеси производилось согласно ТИ 48-4203-06-11-94. Спеченные изделия прошли контроль плотности согласно ГОСТ 200018-74. После шлифовки определялись: предел прочности при поперечном изгибе по ГОСТ 200019-74, твердость по ГОСТ200017-74, коэрцитивная сила по ГОСТ 24916-81, коэффициент стойкости по ОСТ 48-99-84, макро— и микроструктура по ГОСТ 9391-80. Полученные результаты представлены в табл. 5.

Таблица 5

	Физико-механические свойства сплава						
Наименование	ρ,	$\sigma_{_{\rm ИЗГ,}}$	Твердость,	Нс,	Коэффициент		
	Γ/cm^3	МΠа	HRA	kA/м	стойкости		
Смесь ВК6 приготовленная по режиму: 1380 °C, 50 мин.	14,7	105 105 91	91	10,7 11,8 11,5	1,2		
Смесь ВК6 приготовленная по режиму: 1390 °C, 40 мин.	14,0	111,1	90	11,6 12,1 11,8	1,5		

Сплав двухфазный, пористость по объему составляет 0.2%, размер пор до 50 мкм, фаза типа η_1 отсутствует, связка распределена равномерно, толщина прослойки 0.5-1.5 мкм, зернистость равномерная 1-3 мкм, встречаются зерна до 20.0 мкм.

Из анализа данных табл. 5 следует, что при уменьшении исходной фракции крупки значительно уменьшается время помола.

Выводы

Для тонкого и сверхтонкого измельчения порошковых материалов и проведения некоторых механохимических реакций наилучшими возможностями обладают барабанные и вертикальные вибрационные мельницы. В результате проделанной работы спроектирована и изготовлена лабораторная вертикальная вибрационная мельница, предназначенная для тонкого измельчения твердых материалов в сухом состоянии и в пульпе. Эффективность измельчения твердых сплавов в ней в 4 раза выше, чем в горизонтальной вибромельнице. Мельница может быть использована в научно-исследовательских лабораториях, а также в технологических линиях с малыми объемами производства. Физикохимический состав полученных порошков и исследование спеченных образцов показали широкие возможности предлагаемой технологии регенерации твердых сплавов.

Список литературы

1. Iu. Savchenko, A. Gurenko, O. Naumenko. Cutting-edge industrial technology of mining tool manufacturing – Mining of Mineral Deposits. – Vol 10 (2016), 4, pp. 105-110.

Збагачення корисних копалин, 2017. – Вип. 67(108)

Загальні питання технологій збагачення

- 2. Патент №15322, МКИ В22F 3/08, 3/12; С22В 34/36 (Україна). Дідик Р.П., Савченко Ю.В., Вьюнник О.М., Анциферов О.В., Пащенко Н.И., Тубеляева Г.Д. та ін. Спосіб регенерації вольфрамовмісних твердих сплавів. Бюл. № 6. 2000.
- 3. Использование вертикальной вибрационной мельницы для измельчения и смешения компонентов карбидостали / А.В. Анциферов, Е.Ю. Светкина, В.Т. Зубкова, С.А. Каменева // Порошковая металлургия. − 1998. − № 5-6. − С. 4-8.
- 4. Маслов А.Г., Федотьев А.Н. Сравнение размалываемости отходов твердого сплава различных марок // Обработка дисперсных материалов и сред. Теория, исследования, технологии, оборудование: Периодический сборник научных трудов. Одесса: НПО "ВОТУМ", 1999. Вып. 9. С. 58-61.

© Анциферов А.В., Савченко Ю.В., 2017

Надійшла до редколегії 20.09.2017 р. Рекомендовано до публікації д.т.н. Д.Л. Колосовим