УДК 622.026

#### В.Ф. ГАНКЕВИЧ, канд. техн. наук

(Украина, Днепр, Государственное ВУЗ "Национальный горный университет"),

### О.В. ЛИВАК

(Украина, Днепр, Государственное ВУЗ "Украинский государственный химико-технологический университет")

# ИССЛЕДОВАНИЕ ПРОЦЕССОВ РАЗРУШЕНИЯ ГОРНЫХ ПОРОД С ИСПОЛЬЗОВАНИЕМ ТЕМПЕРАТУРНОГО ФАКТОРА

### Введение

В настоящее время остро стоит проблема снижения энергоемкости процессов разрушения горных пород, повышение производительности и повышение долговечности рабочих органов машин без ухудшения технико-экономических и экологических показателей.

Одним из таких путей решения поставленной задачи и является температурный фактор воздействия на горные породы.

*Цель работы* – отработка оптимальны вариантов воздействия на горные породы с целью разрушения их с минимальными энергозатратами.

Приведены результаты исследований состояния поверхностного слоя стекла и горных пород после термического удара охлаждением, для оценки возможности использования данного метода воздействия в различных технологических процессах разрушения горных пород.

Известно, что резкое охлаждение горных пород приводит к необратимым процессам растрескивания охлажденной поверхности так называемыми усадочными напряжениями. Последствия усадочных напряжений (напряжений растяжения) наблюдаются, например, при интенсивном высыхании почвы, когда земля растрескивается в виде фрагментов, напоминающих неправильные соты. Аналогичная картина имеет место при резком охлаждении предварительно нагретых или находящихся в естественном состоянии горных пород.

Поведение горных пород при термоциклическом воздействии рассматривалось в работах [1-4]. В них показано, что в фазе охлаждения в горных породах развиваются мощные растягивающие напряжения, которые могут приводить к растрескиванию пород. Однако, полная картина нарушения массива усадочными трещинами в настоящее время отсутствует.

Наиболее вероятный размер ячейки растрескивания при резком охлаждении поверхности горной породы определяется по зависимости [5].

$$g = \frac{0.45K^2\sigma_c^2}{\pi^2\sigma_*^2\sigma_p^2},\tag{1}$$

где *К* – модуль сцепления материала;  $\sigma_c$  – предел прочности материала на сжа-

тие;  $\sigma_*$  — максимальные растягивающие напряжения, возникающие в поверхностном слое;  $\sigma_p$  — предел прочности материала на растяжение.

В свою очередь

$$K = \sqrt{\pi E \gamma} , \qquad (2)$$

где *E* – модуль Юнга породы; *у* – удельная поверхностная энергия разрушения,

$$\sigma_* = \frac{\beta \cdot E(T_{\mu} - T_{ox})}{1 - \mu},\tag{3}$$

где  $\beta$  – коэффициент линейного расширения материала;  $T_{\mu}$  – температура нагретого материала;  $T_{ox}$  – температура охлаждающей среды;  $\mu$  – коэффициент Пуассона.

Для экспериментального подтверждения зависимости (1) проведены экспериментальные исследования на силикатном стекле, моделирующем горную породу.

В качестве модели стекло выбрано по следующим причинам:

1) по своим физико-механическим характеристикам стекла близки к горным породам. В обычном состоянии стекла – твердые, жесткие и хрупкие тела;

2) стекла являются прозрачными материалами поэтому развитие в них трещин, даже незначительной длины, легко фиксируется визуальными методами;

3) стекла сохраняют термоупругость при нагреве в достаточно широком диапазоне температур;

4) недавними исследованиями показано, что в стеклах, как и в горных породах, имеются не обнаруживаемые визуальными методами развитые системы естественных микротрещин. Существование таких микротрещин доказано двумя радикально отличными друг от друга методами исследования: ионного обмена и импульсных напряжений [6];

5) механические характеристики стекла, необходимые для расчета сетки растрескивания при термоциклическом нагружении по формуле (1) тщательно измерены Панасюком В.В. и приведены в работе [7];

6) стекла, в качестве материала, моделирующего горную породу при разрушении механическими, тепловыми и комбинированными нагрузками использовалось многими исследователями [1].

Экспериментальные исследования по термоциклическому разрушению стекла заключались в следующем: листы стекла размером 200×200 мм и толщиной 5мм плавно нагревались в муфельной печи со скоростью не более 100 °C/час до определенной температуры  $T_{\mu}$ , а затем резко охлаждались окунанием в воду при температуре  $T_{ox} = 15$  °C. Образцы грелись до температуры от  $T_{\mu} = 100$  °C до  $T_{\mu} = 450$  °C с интервалом в  $T_{u\mu} = 10$  °C, таким образом, резкому охлаждению в воде подвергались образцы, нагретые до  $T_{\mu} = 100$ , 11, 120, 130 ... 450 °C. Если учесть, что перепад температур по [3] определяется как

Збагачення корисних копалин, 2017. – Вип. 68(109)

 $\Delta T = T_{_{H}} - T_{_{ox}}$ , то образцы подвергались термоциклу с  $\Delta T = 85, 95, 105, 115, 125 \dots 435$  °C.

На поверхности всех, без исключения, образцов в результате термоциклирования появилась видимая "сотовая" структура трещин с различным поперечным размером отдельного "сота". На рис. 1 показана схематическая картина сетки трещин в стекле при резком охлаждении.



Рис. 1. Схематическая картина сетки трещин в стекле при резком охлаждении

На рис. 2 показан общий вид реальной сетки трещин охлаждения в стекле при различном перепаде температур нагрева и охлаждения.



1)  $T_{\mu} = 150 \,^{\circ}\text{C}$ 



Рис. 2. Реальная картина сетки трещин в стекле при резком охлаждении

#### Підготовчі процеси збагачення





Рис. 3. Одиночные трещины охлаждения под микроскопом. Увеличение в 200 раз, цена деления 10 мкм

Очевидно, что сетка макротрещин в образцах стекла появляется "вытягиванием" невидимых микротрещин. Аналогичная картина сотового растрескивания в горных породах получена в работах [1, 4].

Экспериментально средний размер ячейки разрушения  $g_3$  определялся следующим образом: подсчитывалось количество ячеек *n* на площадке  $S = 1 \text{ см}^2$ ,  $g_3$  размер для каждой пластины определялся по формуле

$$g_{,} = \sqrt{\frac{S}{n}} . \tag{4}$$

Здесь более уместно говорить о среднем эквивалентном размере ячейки. Площадь реальных ячеек неправильной формы приводится к квадрату, и g (или  $g_3$ )— есть размер стороны квадрата с площадью, равной площади реальной "сотовой" ячейки.

Результаты экспериментальных исследований размера ячеек растрескивания силикатного стекла при резком охлаждении и расчеты по зависимости (1) приведены в таблице 1 и на рисунке 4.

При расчете параметров сетки трещин по зависимости (1) физико – механические характеристики силикатного стекла взяты из [1, 6, 7]: коэффициент Пуассона  $\mu = 0,2$ ; модуль Юнга  $E = 1 \cdot 10^{10}$  H/м<sup>2</sup>; коэффициент теплового расширения  $\beta = 8 \cdot 10^{-6}$  1/К; удельная поверхностная энергия разрушения  $\gamma = 2,6$  Дж/м<sup>2</sup>; отношение пределов прочности на сжатие к растяжению (коэф-

фициент хрупкости) 
$$z = \frac{\delta_c}{\delta_p} \approx 12$$

|               | Тем-ра               | $\Lambda T$ | Размер яч       | нейки, мм                        | Абсолютное   | Расхождение,<br>% |  |  |
|---------------|----------------------|-------------|-----------------|----------------------------------|--------------|-------------------|--|--|
| №             | нагрева, $T \circ C$ | °С          | (теоретический) | (эксперимент) $g_{\mathfrak{I}}$ | расхождение, |                   |  |  |
| 1             | $\frac{I_{H}}{10}$   | 85          | 7.40            | 8.40                             | 1.00         | 11.0              |  |  |
| $\frac{1}{2}$ | 150                  | 135         | 2 90            | 3 30                             | 0.40         | 12.1              |  |  |
| 23            | 200                  | 185         | 2,50            | 5,50<br>1 70                     | 0,40         | 12,1              |  |  |
| 5<br>1        | 200                  | 235         | 1,50            | 1,70                             | 0,20         | 30.7              |  |  |
| 4<br>5        | 200                  | 235         | 0,97            | 1,40                             | 0,43         | 30,7<br>40.2      |  |  |
| 5             | 300                  | 205         | 0,00            | 1,30                             | 0,04         | 49,2              |  |  |
| 07            | 330                  | 205         | 0,47            | 1,20                             | 0,73         | 00,8<br>67.2      |  |  |
| /             | 400                  | 383<br>425  | 0,30            | 1,10                             | 0,74         | 07,2              |  |  |
| ð             | 450                  | 435         | 0,28            | 0,95                             | 0,67         | 70,5              |  |  |
| 9,mm          |                      |             |                 |                                  |              |                   |  |  |
|               | 8<br>7<br>6          | -           | 1               |                                  |              |                   |  |  |
|               | 5                    | F           |                 |                                  |              |                   |  |  |

| Зависимость разме | ера ячейки растреск | ивания от разности | температур нагрева |
|-------------------|---------------------|--------------------|--------------------|
|                   | и охлажления ст     | еклянных пластин   |                    |

Таблица 1



Рис. 4. Параметры сетки трещин в силикатном стекле при резком охлаждении: 1 – экспериментальная кривая; 2 – теоретическая кривая

Сравнение экспериментальных данных с теоретическими показывает, что наилучшее совпадение результатов наблюдается при нагреве образцов до температур  $T_{\mu} = 250$  °C. При более высоких температурах расхождение между экспериментальными и теоретическими данными возрастает. Объясняется это тем, что при увеличении температуры нагрева стекла реальные значения модуля Юнга Е уменьшаются [6]. Расчеты же по зависимости (1) выполнялись для постоянного значения Е, соответствующего комнатной температуре, так как точных данных зависимости модуля Юнга от температуры для силикатного стекла в литературных источниках нам обнаружить не удалось.

У горных пород, как и у силикатного стекла наблюдается такая же картина снижения величины Е при увеличении температуры нагрева [2].

В таблице 2 приведены расчетные значения ячейки растрескивания g при резком охлаждении по зависимости (1) для некоторых горных пород. Физикомеханические свойства пород для расчета взяты из [1, 2, 8].

Таблица 2

| Зависимость | размера ячейки | и растрескивания  | горных попрод |
|-------------|----------------|-------------------|---------------|
| OT 1921     | ILOCTU TAMBADA | TVD HATDADA H OVT |               |

|                                 |                                                | 01              | pushoe m.                 | i emiliopar y p               | nui pedu n          | onsignation         |      |               |  |
|---------------------------------|------------------------------------------------|-----------------|---------------------------|-------------------------------|---------------------|---------------------|------|---------------|--|
| N⁰                              | $T_{\scriptscriptstyle H}, ^{\circ}\mathrm{C}$ | $\Delta T$ , °C | $Z = \sigma_c / \sigma_p$ | <i>К</i> , Н/м <sup>3/2</sup> | $E, H/m^2$          | $\beta$ , 1/K       | μ    | <i>g</i> , MM |  |
| 1                               | 2                                              | 3               | 4                         | 5                             | 6                   | 7                   | 8    | 9             |  |
|                                 | Гранит                                         |                 |                           |                               |                     |                     |      |               |  |
| 1                               | 100                                            | 85              |                           | · ·                           |                     |                     |      | 39,3          |  |
| 2                               | 150                                            | 135             |                           |                               |                     |                     |      | 15,5          |  |
| 3                               | 200                                            | 185             |                           |                               |                     |                     |      | 8,2           |  |
| 4                               | 250                                            | 235             |                           |                               |                     |                     |      | 5,1           |  |
| 5                               | 300                                            | 285             |                           |                               |                     |                     |      | 3,4           |  |
| 6                               | 350                                            | 335             |                           |                               |                     |                     |      | 2,5           |  |
| 7                               | 400                                            | 385             |                           |                               |                     |                     |      | 1,9           |  |
| 8                               | 450                                            | 435             |                           |                               |                     |                     |      | 1,5           |  |
| 9                               | 500                                            | 485             |                           |                               |                     |                     |      | 1,2           |  |
| 10                              | 550                                            | 535             |                           |                               |                     |                     |      | 0,99          |  |
| 11                              | 600                                            | 585             | 13,4                      | $1,7.10^{6}$                  | $2,6.10^{10}$       | 10-5                | 0,1  | 0,83          |  |
| 12                              | 650                                            | 635             |                           |                               |                     |                     |      | 0,7           |  |
| 13                              | 700                                            | 685             |                           |                               |                     |                     |      | 0,6           |  |
| 14                              | 750                                            | 735             |                           |                               |                     |                     |      | 0,53          |  |
| 15                              | 800                                            | 785             |                           |                               |                     |                     |      | 0,46          |  |
| 16                              | 850                                            | 835             |                           |                               |                     |                     |      | 0,41          |  |
| 17                              | 900                                            | 885             |                           |                               |                     |                     |      | 0,36          |  |
| 18                              | 950                                            | 935             |                           |                               |                     |                     |      | 0,32          |  |
| 19                              | 1000                                           | 985             |                           |                               |                     |                     |      | 0,29          |  |
| 20                              | 1050                                           | 1035            |                           |                               |                     |                     |      | 0,26          |  |
| 21                              | 1100                                           | 1085            |                           |                               |                     |                     |      | 0,24          |  |
| Оленегорский железистый кварцит |                                                |                 |                           |                               |                     |                     |      |               |  |
| 1                               | 100                                            | 85              |                           |                               |                     |                     |      | 63,1          |  |
| 2                               | 150                                            | 135             |                           |                               |                     |                     |      | 25,0          |  |
| 3                               | 200                                            | 185             |                           |                               |                     |                     |      | 13,3          |  |
| 4                               | 250                                            | 235             |                           |                               |                     |                     |      | 8,2           |  |
| 5                               | 300                                            | 285             |                           |                               |                     |                     |      | 5,6           |  |
| 6                               | 350                                            | 335             |                           |                               |                     |                     |      | 4,0           |  |
| 7                               | 400                                            | 385             |                           |                               |                     |                     |      | 3,0           |  |
| 8                               | 450                                            | 435             |                           |                               |                     |                     |      | 2,4           |  |
| 9                               | 500                                            | 485             |                           |                               |                     |                     |      | 1,9           |  |
| 10                              | 550                                            | 535             |                           |                               |                     |                     |      | 1.5           |  |
| 11                              | 600                                            | 585             | 12.6                      | $32.10^{6}$                   | $6.7 \cdot 10^{10}$ | $0.5 \cdot 10^{-5}$ | 0.17 | 1.33          |  |
| 12                              | 650                                            | 635             | 12,0                      | 0,2 10                        | 0,7 10              | 0,0 10              | 0,17 | 1,13          |  |
| 13                              | 700                                            | 685             |                           |                               |                     |                     |      | 0.97          |  |
| 14                              | 750                                            | 735             |                           |                               |                     |                     |      | 0.84          |  |
| 15                              | 800                                            | 785             |                           |                               |                     |                     |      | 0.74          |  |
| 16                              | 850                                            | 835             |                           |                               |                     |                     |      | 0,74          |  |
| 10                              | 000                                            | 885             |                           |                               |                     |                     |      | 0,05          |  |
| 1/<br>19                        | 900<br>050                                     | 005             |                           |                               |                     |                     |      | 0,50          |  |
| 10                              | 930<br>1000                                    | 933<br>085      |                           |                               |                     |                     |      | 0.32          |  |
| 19                              | 1000                                           | 70J<br>1025     |                           |                               |                     |                     |      | 0,47          |  |
| 20                              | 1050                                           | 1035            |                           |                               |                     |                     |      | 0,45          |  |
| 21                              | 1100                                           | 1085            |                           |                               |                     |                     |      | 0,39          |  |

#### Підготовчі процеси збагачення

|    | Продолжение табл. 2   |      |      |               |               |           |      |            |  |
|----|-----------------------|------|------|---------------|---------------|-----------|------|------------|--|
| 1  | 2                     | 3    | 4    | 5             | 6             | 7         | 8    | 9          |  |
|    | Песчаник              |      |      |               |               |           |      |            |  |
| 1  | 100                   | 85   |      |               |               |           |      | 643,4      |  |
| 2  | 150                   | 135  |      |               |               |           |      | 255,2      |  |
| 3  | 200                   | 185  |      |               |               |           |      | 135,9      |  |
| 4  | 250                   | 235  |      |               |               |           |      | 84,2       |  |
| 5  | 300                   | 285  |      |               |               |           |      | 57,2       |  |
| 6  | 350                   | 335  |      |               |               |           |      | 41,4       |  |
| 7  | 400                   | 385  |      |               |               |           |      | 31,3       |  |
| 8  | 450                   | 435  |      |               |               |           |      | 24,5       |  |
| 9  | 500                   | 485  |      |               |               |           |      | 19,7       |  |
| 10 | 550                   | 535  |      |               | 10            | -         |      | 16,2       |  |
| 11 | 600                   | 585  | 11,2 | $2,37.10^{6}$ | $2,4.10^{10}$ | 0,25.10-5 | 0,28 | 13,58      |  |
| 12 | 650                   | 635  |      |               |               |           |      | 11,52      |  |
| 13 | 700                   | 685  |      |               |               |           |      | 9,90       |  |
| 14 | 750                   | 735  |      |               |               |           |      | 8,6        |  |
| 15 | 800                   | 785  |      |               |               |           |      | 7,54       |  |
| 16 | 850                   | 835  |      |               |               |           |      | 6,67       |  |
| 17 | 900                   | 885  |      |               |               |           |      | 5,94       |  |
| 18 | 950                   | 935  |      |               |               |           |      | 5,32       |  |
| 19 | 1000                  | 985  |      |               |               |           |      | 4,79       |  |
| 20 | 1050                  | 1035 |      |               |               |           |      | 4,34       |  |
| 21 | 1100                  | 1085 |      |               |               |           |      | 3,95       |  |
|    | Кварц (по данным [4]) |      |      |               |               |           |      |            |  |
| 1  | > 573                 |      |      |               |               |           |      | 0,15.(0,4) |  |

Изучение усадочных трещин под микроскопом с увеличением в 200 раз, показало, что берега трещин необратимо расходятся на расстояние до 20 мкм (т.е. усадочные трещины являются раскрытыми) (рис. 3). Нанесение любой подкрашенной жидкости на растресканную поверхность приводит к впитыванию жидкости трещинами на определенную глубину.

Визуальные наблюдения и наблюдения под микроскопом показали, что берега трещин в результате термического удара охлаждением необратимо деформируются, выдавливаясь наружу. Микрошероховатость поверхности стекла существенно меняется. Состояние поверхности, подверженной резкому охлаждению изучалось с помощью профиллографа – 252. Измерялась высота волны микронеровностей поверхности от линии впадин до линии выступов до термоудара и после. Измерения после термоудара проводились в районе трещин, путем пересечения измерительной иглой берегов трещин.

Результаты измерений приведены в таблице 3.

Таблица 3

|    | Высота микронеровностси поверхности стекла до термоудара Re и после R <sub>т</sub> |                                                      |                                                                |                                                      |                                                                |                                                      |  |  |  |  |
|----|------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|--|--|--|--|
| N⁰ | Исходный<br>образец<br><i>R<sub>e</sub></i> , мкм                                  | Среднее<br>значение<br><i>R<sub>e cp</sub></i> , мкм | Образец нагре-<br>тый до 250 °С,<br><i>R<sub>m</sub></i> , мкм | Среднее<br>значение<br><i>R<sub>m cp</sub></i> , мкм | Образец<br>нагретый до<br>350 °С<br><i>R<sub>m</sub></i> , мкм | Среднее<br>значение<br><i>R<sub>m cp</sub></i> , мкм |  |  |  |  |
| 1  | 0,080                                                                              |                                                      | 3,2                                                            |                                                      | 1,7                                                            |                                                      |  |  |  |  |
| 2  | 0,080                                                                              |                                                      | 1,6                                                            |                                                      | 0,5                                                            |                                                      |  |  |  |  |
| 3  | 0,063                                                                              |                                                      | 3,5                                                            |                                                      | 2,0                                                            |                                                      |  |  |  |  |
| 4  | 0,075                                                                              | 0.077                                                | 1,7                                                            | 2.60                                                 | 2,0                                                            | 1 / 9                                                |  |  |  |  |
| 5  | 0,079                                                                              | 0,077                                                | 3,2                                                            | 2,09                                                 | 2,0                                                            | 1,40                                                 |  |  |  |  |
| 6  | 0,081                                                                              |                                                      | 1,6                                                            |                                                      | 0,7                                                            |                                                      |  |  |  |  |
| 7  | 0,080                                                                              |                                                      | 3,7                                                            |                                                      | 0,7                                                            |                                                      |  |  |  |  |
| 8  | 0,078                                                                              |                                                      | 3,0                                                            |                                                      | 2,2                                                            |                                                      |  |  |  |  |

Высота микронеровностей поверхности стекла до термоудара R<sub>e</sub> и после R<sub>т</sub>

Поверхность стекла после термоудара выглядит следующим образом – плоская поверхность внутри соты, с малой начальной шероховатостью (в ненарушенной области) и загнутая вверх в области трещины. Схематически поперечный разрез трещины охлаждения, выходящей на поверхность показан на рисунке 5.



Рис. 5. Поперечный разрез трещины охлаждения: *R<sub>e</sub>* – естественная высота микронеровностей поверхности; *R<sub>m</sub>* – высота микронеровностей после термоудара охлаждением

Следует отметить, что высота микронеровностей после термоудара охлаждением возрастает от 19 до 35 раз по сравнению с естественной микрошероховатостью. При этом, чем больше плотность трещин на поверхности, тем меньше высота вспучивания поверхности в зоне трещины.

Результаты исследований показывают:

1) Резкое охлаждение поверхности силикатного стекла и горных пород приводит к развитию в них мощных усадочных напряжений и, как следствие, растрескиванию поверхности этих материалов "сотовой" трещиноватостью;

2) Зависимость (1) позволяет достаточно точно оценить параметры сетки растрескивания материалов при резком охлаждении.

3) Трещины охлаждения являются раскрытыми и легко впитывают жидкости, что является благоприятным фактором для смачивания разрушаемого забоя поверхностно-активными веществами и промывочными жидкостями. 4) поверхность забоя вблизи трещин деформируется и "вспучивается" в сторону свободной поверхности.

Термический удар охлаждением при значительной разности температур  $\Delta T$  может приводить к достаточно высокой плотности трещин на поверхности горных пород, с размером ячейки растрескивания доли миллиметров.

Термический удар охлаждением как разупрочняющий фактор может использоваться в различных технологических процессах разрушения пород:

1) при подготовке скважин к гидровзрыву (можно создавать равномерную сетку начальных трещин как на отдельных участках скважины, так и по всей ее длине);

2) при пропитке пластов жидкостью, через созданную охдаждением систему трещин;

3) при расширении скважин, как это было экспериментально проверено в реальных процессах расширения скважин [9];

4) при алмазном бурении, когда часть рабочего сектора коронки используется в качестве нагревателя горной породы, через промывочное окно осуществляется термоудар охлаждением [11];

5) при подготовке скважин к взрыву с целью создания зародышевых трещин;

6) в процессах дробления и измельчения горных пород, (при этом режимы термообработки должны быть такими, чтобы ячейка трещин была существенно меньше размера кусков измельчаемой породы).

В результате исследований влияния термоциклического воздействия на кварцевое стекло, гранит, железистый кварцит, песчаники и кварц, пришли к выводу о снижении энергоемкости процесса их разрушения, к появлению сетки трещин на поверхности горных пород.

Данный метод воздействия на породы может быть рекомендован при бурении скважин, их расширении, в процессах дробления и измельчения горных пород, на стадии последующего обогащения полезных ископаемых.

#### Список литературы

1. Разрушение горных пород при термоциклическом воздействии / А.Н. Москалев, Е.Ю. Пигида, Л.Г. Керекилица, Ю.Н. Вахалин. – К.: Наук. думка, 1987. – 248с.

2. Дмитриев А.П., Гончаров С.А. Термическое и комбинированное разрушение горных пород. – М.: Недра, 1978. – 304 с.

3. Забойные факторы алмазного бурения геолого – разведочных скважин / А.О. Кожевников, С.В. Гошовский, И.И. Мартыненко и др. – Д.: ЧП "Лира ЛТД", 2006. – 264 с.

4. Бергман Э.Д., Покровский Г.Н. Термическое разрушение горных пород плазмобурами. – Новосибирск: Наука, 1971. – 193 с.

5. Определение геометрических параметров сетки трещин на поверхности горных пород при термоциклическом воздействии / В.Ф. Ганкевич, Ю.Н. Вахалин Ю.Н., О.В. Ливак и др. // Науковий вісник НГУ. – 2008. – №8. – С. 22-26.

6. Разрушение / Под ред. Г. Либовица. – М.: Мир, 1976. – Т.7. – 634 с.

7. Панасюк В.В. Предельное равновесие хрупких тел с трещинами. – К.: Наук. думка, 1968. – 245 с.

8. Дмитриев А.П., Гончаров С.А., германович Л.Н. Термическое разрушение горных пород. – М.: Недра, 1990. – 255 с.

9. Разрушение горных пород при резком охлаждении: Монография / А.О. Кожевников, В.В. Крисан, Ю.Н. Вахалин и др. – Дн-ск.: ТОВ "Лизунов Пресс", 2011 – 52 с.

10. Пат. 110443 Україна, МПК Е21В 10/46, Е21В 7/14. Термомеханічний породоруйнуючий інструмент / Дреус А.Ю., Кожевников А.О., Судаков А.К., Вахалін Ю.М. / № и 2016 03522; заявл. 04.04.16; опубл.10.10.16, Бюл. №19.

В.Ф. Ганкевич В.Ф., Ливак О.В., 2017

Надійшла до редколегії 06.11.2017 Рекомендовано до публікації д.т.н. Васильйовим Л.М.

УДК 622.27:621.926.9(339.138)

М.І. СОКУР, д-р техн. наук

(Україна, Кременчук, Кременчуцький національний університет ім. Михайла Остроградського), В.С. БІЛЕЦЬКИЙ, д-р техн. наук

(Україна, Харків, Національний технічний університет "Харківський політехнічний інститут"), Д.П. БОЖИК

(Україна, Кременчук, Кременчуцький національний університет ім. Михайла Остроградського)

## ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ НАПРУЖЕНОГО СТАНУ БАРАБАНУ МЛИНА САМОПОДРІБНЕННЯ В ПРОМИСЛОВИХ УМОВАХ

Постановка проблеми і стан її дослідження. Проблема дослідження напруженого стану барабана млина самоподрібнення має два аспекти, які утруднюють задачу. По-перше, моделювання багатотоннажних млинів самоподрібнення (AG) та напівсамоподрібнення (SAG) показує значні проблеми, пов'язані з труднощами в отриманні високоякісних даних для промислових об'єктів, що суттєво ускладнює есперимент [1]. У роботі [2] на платформі графічного програмування MATLAB / SIMULINK успішно розроблено динамічну модель процесу напівсамоподрібнення руди. Модель протестовано та перевірено на продуктивності самоподрібнення 1800 т/год в промислових умовах при подрібненні мідної руди.

По-друге, проблемою є моделювання умов роботи конструктивних елементів млинів самоподрібнення. Для дослідження напруженого стану конструкцій прийнято використовувати імітації навантаження в полі відцентрових сил [3, 4].

Барабани більшості типорозмірів вітчизняних і зарубіжних млинів самоподрібнення оснащені ребрами жорсткості. Думка вчених про вплив ребер жорсткості на величину і характер розподілу напружень у барабані млина неоднозначні [5], що обумовлює необхідність додаткових досліджень. Актуальність дослідження напруженого стану конструкцій млина, зокрема, в промислових умовах, показана також в роботах [6-9].

*Мета статті* – експериментальні дослідження напруженого стану моделі барабана млина самоподрібнення в промислових умовах.

Виклад основного матеріалу. Дослідження проводились на досліднопромисловому зразку млина МБ-90-30 з метою установлення причин відмов

Збагачення корисних копалин, 2017. – Вип. 68(109)